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ABSTRACT:The closed form expression of temperature distribution in a rectangular isotropic under steady 

heat conduction is being obtained by using the principle of cross-linear-superposition along with Fourier 

series. It is found that temperature distribution at crack tips is smooth. Flux possesses Cauchy type 

singularity at crack tips. 

 

KEYWORDS: [1] Flux intensity factor (FIF) [2] Fourier Series [3] Cross-linear-Superposition  

 

 

1. INTRODUCTION 

               The finite dimensional rectangular plates are very commonly used in aero-space vehicles, nuclear 

reactors or in container where chemical reactions take place. These plates face thermal /heat variations. 

Discontinuities may be developed in the plates after the use of structure. 

We consider a three dimensional body in the form of parallelopiped. The heat distributions in cross-section 

normal to z axis is similar i.e. there is no change in heat due to z-variable. Therefore we consider a cross-

section having one Griffith crack along x-axis and y-axis is passing through the middle of center line of 

crack. 

Chandra [1] had solved few problems of heat distribution is strip. Saroj [2] had extend the heat problems to 

rectangle rigidly lubricated and with heated wedge also. Sorout [3] had extend the problem to orthotropic 

medium with heated wedge. Singh [4] solved the thermo-elasticity problem due to heated wedge in an 

isotropic rectangle with edges parallel to crack line as stress-free.Harendra [5] had solved the thermal stress 

problem due to heat sources or sinks in orthotropic infinite medium. The problem of [5] was extended to 

stress-free (parallel to crack line) edges infinite strip by Anjana [6].Sunil [7] had solved the problem of heat 

distribution in an enclosed cylinder having discontinuities at common interface. Parihar[8] had solved some 

Triple trigonometrical series and their applications.The title problem is translated to mathematical model 

through the mixed boundary conditions. We consider a rectangle of length 2a and width  1 2  . We take x-

axis along a line which takes 1 2 0    and y-axis through the middle of length 2a. 
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And continuity conductions across y =0 
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Where {0
±
} means the values of functions towards y>0 and y<0, respectively 

 

 The heat distribution is steady and it is such that constants of specific heat and linear expansion do not vary 

with heat change. The heat conduction in solid in two dimension is governed through Laplace’s equation.  
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( , ) 0,T x y                                                                                            (1.7) 

 

The solution of (1.7) with boundary conditions (1.1)-(1.3) is simple distribution of heat in rectangle. The 

inclusion of boundary conditions (1.4)-(1.6) in the solution of (1.7) is disturbance caused in heat distribution 

due to Griffith-crack. 0,0 | | .y x b    

 

The plan of the paper is as follows. In section 2 we reduce the problem to dual series equation. The solutions 

of dual series, which gives Fredholm integral equations, in section 3. Section 3 solves the Fredholm integral 

equation also. Temperature and Flux are evaluated in section 4.  

 

2. REDUCTION TO AND SOLUTION OF DUAL SERIES EQUATION (SOLUTION) 

 

           To solve (1.7) we follow the principle of cross-linear-superposition. We use Fourier series method 

also. We assume solutions of (1.7) as, for 0.y   
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Where An , Bn , Cm , Dm , En , Fn , Gℓ  and Hℓ are eight constants to be determined through conditions 

(1.1)—(1.6) . 

 

DETERMINATION OF CONSTANTS 

 

        The boundary conditions in (1.1)—(1.3) , after using (2.1) and (2.2) respectively, gives 

 

1 2 1 3 4 2,n n n nA a B a C E a F a C                                                                                          (2.4) 
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Thus six constants out of eight constants will be determined. Further , the conditions (1.4)—(1.5) will gives 

us, 
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Now we take  
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Then   (2.10)-(2.11) change to  
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Thus the physical problem is reduced to the solution of dual series relations (2.13)-(2.14) 

 

SOLUTION   OF   DUAL SERIES 

                The solution of Dual series equation (2.13)-(2.14) will be obtained by the method of  Parihar[ 8]. 

We assume the trail series as-  
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Then the substitution of (2.16)-(2.17) into (2.15) satisfies it identically. We take g(0)=0 with no loss of 

generality .The substitution of (2.16) into (2.14) and inverting the integral.  

We get  
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Thus the problem is reduced to the solution of Fredholm integral equation of second kind given by (2.18). 

 

3. SOLUTION OF FREDHOLM INTEGRAL EQUATION 

                 The solution of Fredholm integral equation (2.18) will be obtained by the method approximation. 

Before, we solve it we take boundary conditions as known specific functions. 
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The use of definitions of  iC  , i=1,2,3,….7  and (3.1), we get 
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Thus the Fredholm integral equation (2.18) will have their parts as- 
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We consider a further special case of flux prescribed over crack faces. We assume that 
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Now we proceed to solve Fredholm integral equation by assuming, g(t) as- 
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4. TEMPERATURE   AND FLUX 

               The temperature over crack faces will be obtained from the series given by (2.13), after taking 1( )P x  

right hand side to left hand side for 0 x b   

Thus 
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FLUX 

Now we calculate flux across y = 0 , 

 

( ,0 )T x
y




 ,    for   | |b x a                                                                                    (From 2.1) 

We get 

            

  
1

( ,0 ) cosn n n

n

T
x x

y
  










  + 1 3 1 4 2 3

1 4 2 31

cosn n n

n

a a a a a a
x

a a a a
  





  
 

 
                                    (4.9) 

Now we use (2.15) in above relation, we get flux as- 
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The first term in right hand side of (4.10) gives singularity while second term does not. We evaluate the 

integrals, after using (3.15) in (4.10) 
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Thus we see that flux possess square root singularity at crack tips.We define flux intensity factor at crack 

tips. 

 

FLUX INTENSITY FACTOR 

It is defined as 
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Now we use (4.12) in (4.18) and evaluate limit, we get 
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0ther terms from flux, given by (4.10)-(4.17), do not possess singular term at x=b. 

 

DISCUSSION AND CONCLUSION 

               The problem of disturbance in heat distribution caused due to a Griffith crack in an isotropic 

rectangle with most general boundary condition had been discussed. The general problem is reduced to 

Fredholm integral equation of second kind. The solution of Fredholm integral equation is obtained by 

approximation the kernel for prescribed (known) temperature and flux at boundary. 

Method can be used for most general conditions also. 

We used Fourier series method with the principle of cross-linear superposition. It is observed that the 

temperature is smooth at crack tips while flux is singular. It has Cauchy type of singularity. 
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