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ABSTRACT:The closed form expression of temperature distribution in a rectangular isotropic under steady
heat conduction is being obtained by using the principle of cross-linear-superposition along with Fourier
series. It is found that temperature distribution at crack tips is smooth. Flux possesses Cauchy type
singularity at crack tips.
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1. INTRODUCTION

The finite dimensional rectangular plates are very commonly used in aero-space vehicles, nuclear
reactors or in container where chemical reactions take place. These plates face thermal /heat variations.
Discontinuities may be developed in the plates after the use of structure.
We consider a three dimensional body in the form of parallelopiped. The heat distributions in cross-section
normal to z axis is similar i.e. there is no change in heat due to z-variable. Therefore we consider a cross-
section having one Griffith crack along x-axis and y-axis is passing through the middle of center line of
crack.
Chandra [1] had solved few problems of heat distribution is strip. Saroj [2] had extend the heat problems to
rectangle rigidly lubricated and with heated wedge also. Sorout [3] had extend the problem to orthotropic
medium with heated wedge. Singh [4] solved the thermo-elasticity problem due to heated wedge in an
isotropic rectangle with edges parallel to crack line as stress-free.Harendra [5] had solved the thermal stress
problem due to heat sources or sinks in orthotropic infinite medium. The problem of [5] was extended to
stress-free (parallel to crack line) edges infinite strip by Anjana [6].Sunil [7] had solved the problem of heat
distribution in an enclosed cylinder having discontinuities at common interface. Parihar[8] had solved some
Triple trigonometrical series and their applications.The title problem is translated to mathematical model
through the mixed boundary conditions. We consider a rectangle of length 2a and width (5, +5,) . We take x-

axis along a line which takes &, =5, =0 and y-axis through the middle of length 2a.

%(x,&l) = Q1(x), %(X’_az) =Qy(X), -a<x<a (1.1)
%(a,wo):Qs(Y), Z—I(—a,y>0): Qu(y), Osy<g (1.2)
T @ay<0=-Qs), T(ay<0-Qly), 0sy<s (1.3)
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T (x,0")=Q7(x), " (x,0)=Qg(X), -b<x<b (1.4)
dy oy

And continuity conductions across y =0

oT + — 0T -
9 (x,0) = 2.(x,0), b<|x<a 1.5

T(x,0") = T(x,0), b<x|<a (1.6)

Where {0} means the values of functions towards y>0 and y<0, respectively

The heat distribution is steady and it is such that constants of specific heat and linear expansion do not vary
with heat change. The heat conduction in solid in two dimension is governed through Laplace’s equation.

2 2

(a—2+a—2] T(x,y)=0, 1.7
oX= oy

The solution of (1.7) with boundary conditions (1.1)-(1.3) is simple distribution of heat in rectangle. The

inclusion of boundary conditions (1.4)-(1.6) in the solution of (1.7) is disturbance caused in heat distribution

due to Griffith-crack. y=0,0<x|<h.

The plan of the paper is as follows. In section 2 we reduce the problem to dual series equation. The solutions
of dual series, which gives Fredholm integral equations, in section 3. Section 3 solves the Fredholm integral
equation also. Temperature and Flux are evaluated in section 4.

2. REDUCTION TO AND SOLUTION OF DUAL SERIES EQUATION (SOLUTION)

To solve (1.7) we follow the principle of cross-linear-superposition. We use Fourier series method
also. We assume solutions of (1.7) as, for y>o.

0

T(x,y) :AO%CO+ D [ A coshayy+ B, sinhayy Jcosa, (x) + D [ Cpy cosh By X+ Dy sinh By, x Jcos Sy y

n=1 m=1
(2.1)
And for y<o0
T(x,Y) = E°+GO +> [ E,coshay,y + Fy sinha y Jeos a, + D [Gy coshy,x+H,sinh y,x]cos y, y
n=1 =)
(2.2)
With
nz _mz _ i 2.3
On = a ] ﬂm 51 l 7€ 52 ( . )

copyright@ijarets.org Page 19



International Journal Of Advanced Research In Engineering Technology & Sciences ISSN: 2394-2819
Email: editor@ijarets.org June- 2016 Volume 3 Issue-6 www.ijarets.org

Where A, , B, Cn, Dm, En, Fn, G¢ and He are eight constants to be determined through conditions
(1.1)—(1.6) .

DETERMINATION OF CONSTANTS

The boundary conditions in (1.1)—(1.3) , after using (2.1) and (2.2) respectively, gives

Avay +Bhay =C;,—Epag +Fa, =Cp (2.4)
Cmas + Dpag =C3,—Cinaz + Dyag =C4 (2-5)
Gyag +Hyayg =Cs5,—-Gpay +H/ap =Cg (2.6)
Where

& =ansinhayd, ay =a,coshand, a3=a,sinhayd,, a4 =, cosha,d,
85 = fin SINN ffna,  @g = fincosh fna, a7 =a5, 83 =ag

ag =yysinhy,a, ag=y,coshy,a, ag=a, a=ap (2.7)

a a
Ci= le(x)COSanxdx , Co= IQZ(X)COSanXdX

—a —a
2l 2l

Co= {Qg(y)COSﬂmydy Cus £Q4(y)c05ﬂmydy 2.8)
0, &,

Cs = _([QS(Y)COSWydy Cg = !Qe(y)cos;/(ydy

Thus six constants out of eight constants will be determined. Further , the conditions (1.4)—(1.5) will gives
us,

i (Bu- Fr) = (@10~ sy = C 2.9
Now using (1.(?3) to give

T(x,0)-T(x,07) =0, b<x<a

B;>+i(2‘;+:ijc05anx:a(x), b<x<a (2.10)

Now we calculate

%(x,o+)+%(x,o—): Q7 (X)+Qg(x) =Qqy(x), 0<x<b
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_1 1 C
Zan B, cosapx = EQg(x)+§zagn a—:cowndx

= Qo(¥) , 0<x<b (2.11)
Pi= g{cosh(yk X). Cszagc +sinh(y,x). 5 +Ce } i { 4 cosh(fBmX) +Ta6csinh(,8mx)} i[ ooy }cos anX
Cg = Coay +Coay (2.12)
Now we take
day +aa
Bn [MJ =n @ =By (2.13)
qaz

Then (2.10)-(2.11) change to

&Jrzfﬂn cos(ayX) = R (x) , b<x<a (2.14)
n=1
ianwn COS arp X = 643 (X), 0<x<b
n=1
- - ajag —aa, —ady
=060(X)— B COS ¢y X 215
fo() nzzlan n[ &8y +ayag j “n ( )

1 1
Qo(¥) = EQg(x) +EZC7 cos(ayX)
Thus the physical problem is reduced to the solution of dual series relations (2.13)-(2.14)

SOLUTION OF DUAL SERIES
The solution of Dual series equation (2.13)-(2.14) will be obtained by the method of Parihar[ 8].

We assume the trail series as-
b

O = 2[ [ <g(t)—§ | P1'<t)>sin(ant)dt] (2.16)
b

0

Po =2

b la ‘
jt.g(t)——jpl(t) dt.R () (2.17)
0 ab

Then the substitution of (2.16)-(2.17) into (2.15) satisfies it identically. We take g(0)=0 with no loss of
generality . The substitution of (2.16) into (2.14) and inverting the integral.

We get

g(t)=%\/%—,/;){Ao(t)+_?g(y)K(y,t)dy} , 0<t<b (2.18)
Where i

o) = [ /2B T [ R@sinat@ar 7 (2.19)

G(t,y)
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b
K(y.t) = J-cos(q,aIZ)ﬂfG(a, b) M (. y)da (2.20)
5 G(a,t)
M (e, y) = > by () sin(aqa) cos(a y) (2.21)
n=1
L
R(Y) = [R ()M (a,y)da (2.21 a)
b
G(t, y) = cos(qt) —cos(qy) | T
’ q - 2

Thus the problem is reduced to the solution of Fredholm integral equation of second kind given by (2.18).

3. SOLUTION OF FREDHOLM INTEGRAL EQUATION
The solution of Fredholm integral equation (2.18) will be obtained by the method approximation.

Before, we solve it we take boundary conditions as known specific functions.
Let & (x)=d; =constant

6,(x) =0=no flux across y=-g,

65(y) = 6,(y) = d, = Constants (3.2)

65(y) = 65(y) =0 No flux across x=+a

¢ (y)=6(y)=6(y) Fory<O0
The use of definitions of ¢; ,i=1,2,3,....7 and (3.1), we get

Cl:dlalCZ :01C3 =Cy4 :5_|_d21 C5=CG=C7=CB =0

(3.2)
Then
G (X)=2(G(x) Ao (X) = (X) (3.3)
Using (3.2) in (2.12) , we get
Pl(x)=—2§:%—§Lsinhﬂmx—a—%iilog|/312—cosqx| (3.4)
m=1 2ag 2 ol
—(2r+ 1+4°
y—e@Heaz g2 Ztlé
P, (x) =sin(ax)J3(a) +sin(2gx)S3(20) (3.5)
_1s 25BN\ 101 5(6.Y)
53(y) = 4£56Chﬂma<d1(r,51,5z>+4r=0 2 Gu(r.01.0) (3.54)
1 (BmY) = %[ﬁm (cosh Brb +cosgbcosh ﬁmb>]+ ysingbcosh S,b (3.5b)
Pm”+Y
1+cosqb /ilz /312 +1
S (B, y)=———"2 4 P Jjog| L2 = 3.5
2(B1Y) y + y {oglﬂf—cosqb |} (35¢)
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M (a,y) _——ZZSln(qa) cos(qy).dy (r, 81, 8,) +sin(2qa) cos(2qy)d, (r, 8, 5,) (3.6)
r 0
dy(r,8,68,) = 1 + 1 3.6a
1(r % 2) cosh2qr (s +85)  cosh2q(r(sy +8,) + ) ( )
0 (1, 5,,6) = ! - 1 (3.6 b)

cosh? 2qr(dy +65)  cosh? 2q(r(S, +5,) +5,)

Thus the Fredholm integral equation (2.18) will have their parts as-

/2)\JG(t,b).
Bo(t) = j°°s(qy6(”t) C0 5 (e (37)

g P'(x)sin SX
=0 P AT

B2 (y) = 0(y) + Po(y) + { 500y)

K(y,t) Will be given by (2.19) and first of (2.20)

Now we calculate K(y,t) which is given below

0

K(y,t)=—%2[ 2dy(r, 81, 8)sin(Ae)y (1) + sin(20e)da(r, 81, &) (21(1) ~Io(t)) Jcos pay (3.8)

r=0
Where
b

teos(qy/2)\G(y.b)
= sy (3.8) a

\/zﬂ' S ' n +1 r2¢
ty=—-> (-1) "C,G"(0,0)——"—— 3.8)b
" g g‘)( ) GO e (3:8)
We consider a further special case of flux prescribed over crack faces. We assume that
& (x) = 6, =Constant (3.9)
Then
Ao(t) = A01('() +A02 (1) + Ag3(t) (3.10)

Agy(t) = ﬁ = Constant

Aga (t) = by Iy (t) +dbs {215 (1) ~ 1o (1)} (3.10) a

Aga(®) = bylo (1) +sin(at)dyly () +sin(2at)d (21, (1) ~To (1)) (3.10)b

by = i [ acosh(Bma) (1+cos(ab)) — B Sin Bybsinh ﬁmbj% (3.10)c

b, = z\/? 1{cot < /ﬂl i tan(qb/2)>} (3.10) d
sin 2qb ad;

by = Z[b a+ 208 + }Ztl (3.10) e

Now we proceed to solve Fredholm integral equation by assuming, g(t) as-
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© -1
9(t) = Y gm(®){cosh(ma(s; +5,))} , 0<t<b (3.11)
m=0

Now we use (3.11) in (2.18) and use Ay(t) , K(y,t) from (3.10) and (3.8) respectively for the case (3.9) i.e.
when constant flux is maintained at crack faces, then compare the co-efficient of {cosh mq(§l+52}_l :
for different m=0,1,2,3.. from both sides of the equations. We retained for m = 0,1,2 only.

_ 2sin(qt / 2)yq 3.12
g(t) Ta2G0h) [1+D;, ] (3.12)
q®=0 (3.13)

2 sin(qt/2 "
62(0) =a—253‘(%) by ©)-+bs (2L, - T} ] + sin(@1y©)+ 210 £ go(e)da] (3.14)
Then

:Zsin(qt/Z)yxo a —a . 1 b

g(t) —azm {\/i(Hbz){\/?bg+Il(t)<bl+Sm(Qt)+2b2>+2b312(t)}cosh22q(§l+52)}0£t£

(3.15)

4. TEMPERATURE AND FLUX
The temperature over crack faces will be obtained from the series given by (2.13), after taking P (x)

right hand side to left hand side for 0<x<b

Thus

T(x,O):Tg(t)dt , 0<x<b (4.2)
Where g(t)xis given by (3.15). Now using (3.15) in (4.1) and evaluating the integrals, we get
T()= @[Xl(x)-el +y1 (X0 +2 (X)83 +73(X) 4 + 4 (X)es | (4.2)
With

2
o =1+, _<b3 ) (b1+2b22)G(0,b) bG 4(o,b)>e5

€ = <@+%G(O,b)>95

e3 =bses ) e, =e5G(0,b)

&5 =sech? (2q(6; +65)) X0 ~ coshd < cosngjg> (4.3)-(4.4)
cos(q

(4.5)

yi(x) = \Ele [cos(qb) +cos?(qb/ 2)} _ cos(ax/ Z;M
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Xl(x)—{G(x,b)+cosz(qb/2)}cos(qx/2),/G(x,b)
cos? (gb/2) -

m(x)=%qcos2(qb/2) +eos(ab)ya ()

2X1(X)+/2 cos(qx / 2) VG (x.b)

cos? (gb/2)

(4.6)

V() = {cos(qx / Z)JG(X, b) —\ﬁcos2 (ab/2)X1(x) } )

q

G2 (0,b) _1/sin(gx/2) singx/2 G(0,b) —2G(0, x)
va) ==, [ cos <sin(qb/2)>+25in4(qb/2)< NA) >‘G(X'b) I+ cos(ablya (9

(4.8)
FLUX
Now we calculate flux acrossy =0,
%T(x,o*) , for b<x|<a (From 2.1)
We get
0= Zancon cos X + z {%}7 cosanx (4.9)
Now we use (2 15) in above relatlon, we get flux as-
b
x,0" (t)smqt t+ | g(@)M (e, X)da 4.10
8y()jG(t) {g()() (4.10)
With
M (e, X) = i{w}sin(aan)cos%x (4.12)
=1 a, +apag

The first term in right hand side of (4.10) gives singularity while second term does not. We evaluate the
integrals, after using (3. 15) in (4.10)

%(X,O+):£w02er0 (x)tjg(a)M(a X)da, b<x<a (4.12)
=1 0
a_ _ sin(ax/2) 41
el(x) \F 901()() ' 901()() \/G(b_)() ( . 3)
6,(%) = - ai(}b) 00, 8100 =T cos@) 6120 (4.142)
B2 (x) = cos(x) o1 (X) 65 (X) = 31 (X) + O32(X) (4.14 b)
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B31(x) = ‘ai% b) [4G(x,b—G(0,b)] +%cos(qx) (4.15 a)
635 (X) = c0s(x) G2 () (4.15b)
04(X) =$sin? Q1 (X) + Oy + 643 COS(0X) (4.16 a)

Oy = % [25in(qb 12) +cos(qb) cosh ™ (sec(qb / 2)}

O3 = %cosh‘1 (secqb/2) (4.16) b
. G0,
sin(gb/2) +,|——=
01109 = sec? (qx / 2)sec(gb/ 2) log| 2 | (4.16 ¢)
24yG(0. %) sin(qb/2) - L(g' X)
6 (X) = G5 +€0os(0x) 6, (X) (4.17)

_cos’(ab/2) [sin(qb/2)<5+ 2tan’ qb/2>—4tan(qb/2)sec(qb/2) - (4—3cos2 (qb/2)cosh*(secqb / 2)]
a2

051
Thus we see that flux possess square root singularity at crack tips.We define flux intensity factor at crack
tips.

FLUX INTENSITY FACTOR
It is defined as
Ry = lim Jx-b <%r(x,0+)> (4.18)

x—b

Now we use (4.12) in (4.18) and evaluate limit, we get

R =vo fw [—el —e,cosqgb+e; cos? qb}
7a
(4.19)

Other terms from flux, given by (4.10)-(4.17), do not possess singular term at x=b.

DISCUSSION AND CONCLUSION

The problem of disturbance in heat distribution caused due to a Griffith crack in an isotropic
rectangle with most general boundary condition had been discussed. The general problem is reduced to
Fredholm integral equation of second kind. The solution of Fredholm integral equation is obtained by
approximation the kernel for prescribed (known) temperature and flux at boundary.
Method can be used for most general conditions also.
We used Fourier series method with the principle of cross-linear superposition. It is observed that the
temperature is smooth at crack tips while flux is singular. It has Cauchy type of singularity.
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